If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2+48y-9=0
a = 11; b = 48; c = -9;
Δ = b2-4ac
Δ = 482-4·11·(-9)
Δ = 2700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2700}=\sqrt{900*3}=\sqrt{900}*\sqrt{3}=30\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-30\sqrt{3}}{2*11}=\frac{-48-30\sqrt{3}}{22} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+30\sqrt{3}}{2*11}=\frac{-48+30\sqrt{3}}{22} $
| 9x-4-6x=2(x+1)-5x | | 5r-3=2r+18 | | 55x=50x+15 | | -14=0-1(y-1) | | 6x2=44 | | 55=2x(5) | | -8(2x+10)=6 | | 2(x+12)=39 | | 8(x+1)-7x=-4 | | 9*2^x=4*3^x | | 16=4x-6+3x | | a-5+3a=15 | | x2+13=24 | | 3x+15=9x-11 | | F=9/5x-34+32 | | 9p-7+3p=11 | | 5x+3(5+10x)=55 | | -3n+4=-19 | | 1+x/5x=80 | | 9(x+2)-6=7x+2(6+×) | | -15=7-4(x+2) | | G+4(g-5)=15 | | 8(2+d)-4d=-32 | | X2+44x+84=0 | | 2(-2x-1)=15 | | 99x=-2 | | a+a+9=180 | | 8-y-y=12 | | 50x+35=65 | | 4x-7x+5=-10 | | a+a+22=180 | | 0.25x410=12 |